Dicer activity in neural crest cells is essential for craniofacial organogenesis and pharyngeal arch artery morphogenesis
نویسندگان
چکیده
MicroRNAs (miRNAs) play important roles in regulating gene expression during numerous biological/pathological processes. Dicer encodes an RNase III endonuclease that is essential for generating most, if not all, functional miRNAs. In this work, we applied a conditional gene inactivation approach to examine the function of Dicer during neural crest cell (NCC) development. Mice with NCC-specific inactivation of Dicer died perinatally. Cranial and cardiac NCC migration into target tissues was not affected by Dicer disruption, but their subsequent development was disturbed. NCC derivatives and their associated mesoderm-derived cells displayed massive apoptosis, leading to severe abnormalities during craniofacial morphogenesis and organogenesis. In addition, the 4th pharyngeal arch artery (PAA) remodeling was affected, resulting in interrupted aortic arch artery type B (IAA-B) in mutant animals. Taken together, our results show that Dicer activity in NCCs is essential for craniofacial development and pharyngeal arch artery morphogenesis.
منابع مشابه
The neural crest-enriched microRNA miR-452 regulates epithelial-mesenchymal signaling in the first pharyngeal arch.
Neural crest cells (NCCs) are a subset of multipotent, migratory stem cells that populate a large number of tissues during development and are important for craniofacial and cardiac morphogenesis. Although microRNAs (miRNAs) have emerged as important regulators of development and disease, little is known about their role in NCC development. Here, we show that loss of miRNA biogenesis by NCC-spe...
متن کاملHh signaling regulates patterning and morphogenesis of the pharyngeal arch-derived skeleton.
The proper function of the craniofacial skeleton requires the proper shaping of many individual skeletal elements. Neural crest cells generate much of the craniofacial skeleton and morphogenesis of skeletal elements occurs in transient, reiterated structures termed pharyngeal arches. The shape of individual elements depends upon intrinsic patterning within the neural crest as well as extrinsic ...
متن کاملtbx2a Is Required for Specification of Endodermal Pouches during Development of the Pharyngeal Arches
Tbx2 is a member of the T-box family of transcription factors essential for embryo- and organogenesis. A deficiency in the zebrafish paralogue tbx2a causes abnormalities of the pharyngeal arches in a p53-independent manner. The pharyngeal arches are formed by derivatives of all three embryonic germ layers: endodermal pouches, mesenchymal condensations and neural crest cells. While tbx2a express...
متن کاملZebrafish wnt9a is expressed in pharyngeal ectoderm and is required for palate and lower jaw development
Wnt activity is critical in craniofacial morphogenesis. Dysregulation of Wnt/β-catenin signaling results in significant alterations in the facial form, and has been implicated in cleft palate phenotypes in mouse and man. In zebrafish, we show that wnt9a is expressed in the pharyngeal arch, oropharyngeal epithelium that circumscribes the ethmoid plate, and ectodermal cells superficial to the low...
متن کاملLoss of microRNAs in neural crest leads to cardiovascular syndromes resembling human congenital heart defects.
OBJECTIVE Congenital heart defects represent the most common human birth defects. Even though the genetic cause of these syndromes has been linked to candidate genes, the underlying molecular mechanisms are still largely unknown. Disturbance of neural crest cell (NCC) migration into the derivatives of the pharyngeal arches and pouches can account for many of the developmental defects. The goal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 128 شماره
صفحات -
تاریخ انتشار 2011